ar X iv : m at h / 04 07 11 4 v 3 [ m at h . D S ] 2 4 Ja n 20 05 STATISTICAL STABILITY OF SADDLE - NODE ARCS

نویسنده

  • MARIA JOSÉ PACIFICO
چکیده

We study the dynamics of generic unfoldings of saddle-node circle local diffeo-morphisms from the measure theoretical point of view, obtaining statistical and stochastic stability results for deterministic and random perturbations in this kind of one-parameter families.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 04 07 11 4 v 4 [ m at h . D S ] 3 0 N ov 2 00 5 STATISTICAL STABILITY OF SADDLE - NODE ARCS

We study the dynamics of generic unfoldings of saddle-node circle local diffeomorphisms from the measure theoretical point of view, obtaining statistical and stochastic stability results for deterministic and random perturbations in this kind of one-parameter families. CONTENTS

متن کامل

ar X iv : m at h / 04 07 11 4 v 1 [ m at h . D S ] 8 J ul 2 00 4 STATISTICAL STABILITY OF SADDLE - NODE ARCS

We study the dynamics of generic unfoldings of saddle-node circle local diffeomorphisms from the measure theoretical point of view, obtaining statistical stability results for deterministic and random perturbations in these kind of one-parameter families. In the process we characterize the asymptotic dynamics of Lebesgue almost every point for maps f near the bifurcation value and obtain equili...

متن کامل

ar X iv : m at h / 04 10 33 5 v 2 [ m at h . C O ] 3 1 Ja n 20 05 HIGHER CONNECTIVITY OF GRAPH COLORING COMPLEXES

The main result of this paper is a proof of the following conjecture of Babson & Kozlov: Theorem. Let G be a graph of maximal valency d, then the complex Hom (G, Kn) is at least (n − d − 2)-connected. Here Hom (−,−) denotes the polyhedral complex introduced by Lovász to study the topological lower bounds for chromatic numbers of graphs. We will also prove, as a corollary to the main theorem, th...

متن کامل

ar X iv : m at h / 04 02 15 2 v 2 [ m at h . Q A ] 1 4 Ja n 20 05 On relations for the q - multiple zeta values

We prove some relations for the q-multiple zeta values (qMZV). They are q-analogues of the cyclic sum formula, the Ohno relation and the Ohno-Zagier relation for the multiple zeta values (MZV). We discuss the problem to determine the dimension of the space spanned by qMZV's over Q, and present an application to MZV.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005